Partial Differential Equations (Semester II; Academic Year 2024-25) Indian Statistical Institute, Bangalore

Midterm Exam

Duration: 3 hrs

Maximum Marks: 30

- 1. Reduce to canonical form : $u_{xx} 2u_{xy} 3u_{yy} + u_y = 0.$ (2)
- 2. Evaluate the integrals:

(a)
$$\int_{\Omega} \frac{2x_1}{1+|x|^2} dx$$
, where $\Omega = \{x \in \mathbb{R}^3 : |x_1| + |x_2| + |x_3| \le 1\}$ (1)

(b)
$$\int_{B(\alpha,1)} \frac{\partial u}{\partial x_1} dx$$
, where $u = |x|^{-1}$ in \mathbb{R}^3 and $\alpha = (2,0,0)$. (1)

- 3. Consider the PDE $xu_x + yu_y + zu_z = 3u$ in \mathbb{R}^3 .
 - (a) Solve the PDE with initial condition $u(x, y, 1) = x^2 + y^2$. (3)
 - (b) Is it possible to find unique solution if the initial condition is prescribed on the (1) surface $z = 1 + x^2 + y^2$?

4. Consider the following IVPs:

A.
$$u = u_x^2 - 3u_y^2$$
, $u(x, 0) = x^2$, $x > 0$.
B. $u = u_x u_y$, $u(x, 0) = x^2$, $x > 0$.

(a) Discuss the existence and uniqueness of both IVPs.

(b) Solve any one the above.

5. Let Ω be an open, bounded set in \mathbb{R}^n . Suppose $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies $\Delta u = -1$ (3) in Ω , u = 0 on $\partial\Omega$. Show that for $x \in \Omega$, $u(x) \ge \frac{1}{2n} (d(x, \partial\Omega))^2$.

(Hint: For fixed $x_0 \in \Omega$, consider the function $u(x) + \frac{1}{2n}|x - x_0|^2$, $x \in \Omega$.)

- 6. Suppose u is a harmonic function in \mathbb{R}^n satisfying $|u(x)| \leq C(1+|x|^m)$, for some (3) non-negative integer m and for all $x \in \mathbb{R}^n$. Show that u is a polynomial of degree at most m.
- 7. Let Ω is a bounded, open subset of \mathbb{R}^n , and $u \in C^1(\Omega)$. If $\int_{\partial B} \frac{\partial u}{\partial \nu} dS = 0$ for every (3) ball B with $\bar{B} \subset \Omega$, show that u is harmonic in Ω .
- 8. Consider the PDE $xu_x + yu_y = 2u$ on \mathbb{R}^2 .
 - (a) Solve the PDE with the initial condition u(x, 1) = x. Determine whether the (3) solution is globally unique? If it is not, find and alternative solution on \mathbb{R}^2 .
 - (b) Find two solutions to the PDE with the initial condition $u(x, e^x) = xe^x$, ensuring (3) that these solutions do not coincide in any neighborhood of the initial curve.

(3)

(4)